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Quantum Mechanical Transport Equation

*
for Atomic Systems

Paul R. Bermant
Physics Department, Yale University

New Haven, Connecticut 06520

A Quantum Mechanical Transport Equation
(QMTE) is derived which should be applicable
to a wide range of problems involving the
interaction of radiation with atoms or mole-
cules which are also subject to collisions
with perturber atoms. The equation follows
the time evolution of the macroscopic atomic

density matrix elements of atoms located at
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classical position R and moving h clag-
sical veloclvy v. I% 1s guantum mzchanical
in the sense that all collision kernels or
rates which appesar have been obtained from
& guentum mechanical theory and, as such,
vropeviy take intc account the energy level
varistions and velocity changes of the
active {emitting or absorbing) atom proml
duced in collisions with perturber atoms.
The QUTE represents a somewhat different
formulation of the problem than that con=-
gidered in earlier wmrksm’ The present

formulation 1s bebter sulted to problems

I

involving high intensity external fie as

Cﬁ

guch as those encountersd in laser physics.




I. INTRODUCTION

In two previous papersl’2 { hereafter referred to
as QMI and QMII), a theory of pressure effects was
deveioped which enabled one to follow the time evo-
lution of a moving atom which was interacting with
some external radiation field and uhdergoing colli~-
sions. with perturber atcoms. Quantization of the
atoms' center-of-mass motions proved to be a key
feature of this theory since it permitted a consis-
tent‘treatment of both the energy level varistions
and velocity changes of the active (emitting or
absorbing} atom caused by collisions with perturber
atoms. One drawback of the apprcach of QMII was
that it was formulated in terms of a perturb&tibn
expansion in powers of the external field so that,
in its present form, the approach wag not well
suited to problems involving high intensity fields.
In this paper, based on the results of QMI and II,
we shall derive a Quantum Mechanical Transport
Equation (QMTE) which will not possess this drawback.

The eduation to be derived is termed a trans-
| port equation because it will describe the évelution
of the macroscopic density matrix (or distribution

function) of the ensemble of active atoms specified



by the classical wvariables g, v, t. On the other
hand, the equation will be quantum mechanical in

the sense that all collisions kernels and rates which
appear will have been obtained by inference from

the guantum mechanical‘collision‘results of QMI and
II. The fact that all our collision kernels are

well defined quantum mechanical gquantities distin-

3’h'which make use

guishes our theory from others
of a similar eguation with phenomenclogical (and
sometimes incorrect) kernels based on a classical
rather than quantum mechanical description of the
atomic center-of-mass motion.

0f what use is the QMTE? Typically, traasport
equations enable one to determine the approach to
equilibrium of an ensemble of atoms initially described
by a non-equilibrium velocity distribution. However,
althoﬁgh applicable to problems of’this kind, the
QMTE will be developed in a manner directed to#ards
applicaﬁion to a different class of problemé.~'3pe“
cifically, we have in mind a situafion where the active
and perturber:atoms are permitted fc reach some sort
of thermal egquilibrium. At that point, an excitetion
or external field interaction is "turned on" and
tends to alter the egullibrium distribution of the
active atoms. The QMTE will trace.the evdlution of the
" active atom dengity matrix from the original eguili-~

brium to the new steady state.
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- In turn, the macroscopic density méfrix‘élemeﬁts
obtéined a8 solutions of the QMTE will, in general,
enablé one to calculate values for guantities of
physical interest in & given problem. For example,
in laser problems, the atomic pqlarization‘which
serves as a driving function for the claésicgl laser
electric field is directly related to off-disgonal

1,2 Similarly, spontaneous

density matrix elements.
emission spectral profiles are determined by the
diagonal density matrix elements which represent the
probability of finding atoms in a given state with |
some specified photons present. In fact, Jus£ as
the solution of a classical transport equation provides
values for the system's distribution function from
which the average values of system parameters may be'
'calculated, the solution of the QMTE provides values
for density matrix elements from which the expectation
values of quantum mechanical operators that act upon
electronic state wave functions may be obtained Hemce,
the QMTE may be uged as a starting point for examining the
role of collisions in atomic systems subject to exter-
nal field interactlons.

The approximations and regions of validity of
the theory will be discussed in Sec. II, as well as
our method of approach. In Sec. III, the QMTE is
derived for the case of‘no collisions, and collisions

are incorporated into this result in Sec. IV, Possible



-

extensions of the thaory and a discussion of the
'results are given in Secs. V and VI, respectively,
Several calculations, which would hinder the flow

of the derivation, are relegated to the Appendices.
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II. APPROXIMATIONS AND METHCD OF APPROACH

' There are three interrelated implicit assump-
tions of the theory which should be noted. ,First,
‘it is assumed that there is some way of distinqﬁishiﬁg
active atoms from perturber atoms. Usually this
distinction may be made based on the fact that
-{a) the perturberS'differ chemically from the active
-atoms or (b) the perturbers are in their ground state
while the active stoms have a non*negligible excited
state population. Second, it is’assumed4that‘the
perturber density is much greater than the‘active
atom densit& 80 that active atom~active atom collisions
(which would lead to a collisional contribution such
as that encountered in the Boltzmann Equation) may
be neglected. Third, and somewhat justified by the
fact that there are many more perturber"perturber th&m
perturber ~getiver atom collisions, we assume that
the berturber velocity distribution is effectively
unaltered by perturber -active atom collisions and
that it is both time and coordinate independent. If
this assumption were not incorpofated, one would be .
led to coupled transport equations for the perturber
and active atom deﬁsity matrix elements. The above
assumptions are essential to our transport theory

appro&ch.



Before listing some explicit apprcximations we
shall employ, it will prove useful to introduce several
parameters which characterize the collision process.
These parameters and their typical values are as
follows: the effective range R of the active~atom~
-7

perturber interaction is = 10 'cm, the duration of &

collision, Tos is z,lo-lesec, and the average rate fﬁ at
i "m [T
- which collisions occur (or equivalently the inverse

-1

average time between collisions)‘is_%lo7 sec ~ at

1.0 Torr and increases linearly with pressure.
Approximations

(1) It is assumed that the duration of 2 collis&om

is much 1ess than the time between collisions,
(i.e. T T << 1) so that we need consider binsary
collisions only. This binary collisions approxima-
tion is génerally valid to pressures of up to‘several
hundred Torr.

(2) We shall work in the impact theory limit on
the assumption that the externsl field values can
be taken as constant throughout the duration of a
collision. While the validity conditions for the

| imapet approximation must be separately examined for



each problem, one usually finds requirements like
T,/T << 1 and Aw, << 1 where T is some effective
iifetimé of the atomic system and A® is some de-
tuning from line center which msy be of interest.
(3)>-An adiabatic approximation is made by assuming

that the frequency separation of the energy levels
=1
c o
This implies that the collisions do not possess suffi-

of the atomic system is much greater than <«

cient energy to induce transitions between the atomic
states, While this approximation is wvalid for
optically separated levels, it fails for any levels

6MHZ, For the present time, we

separsted by g 10
defer comment on the additionsl modifications and
complications which would be introduced if collision
induced transitions were includéd in the theery.

(4) We shall look upon the perturber atoms as
moving sources of interaction potentials for the
active-gtoms. That is, one can associate g potential
U(R - gj)withiaperﬁurber located at position gd’
In effect, this procedure neglects the possibility
that the perturbers (which are assumed to be in
their ground states before a collision) can become
excited as a result of a colliéioh. Thus,‘we.neglect

all collision induced excitation transfer processes



-10 -

‘such as those which may arise in_collisions between
~atcms of the same kind and restrict the theory to
foreign gas type collisions‘5 )

(5) The atoms are assumed to be excited 1ndividu&lly
| rather than coherently. In égggﬁion, excitation
mechaﬁisms such as radiation trapping and collision
induced excitation transfer which depend on the

density matrix of the system are not included in

the theory.

~—

(6) We assume that the external fields do not

significantly affect the actlve atom's center-of”'
mass-motion. If the external fields are electro-
magnetic in nature, this assumption will be wvalid
if the active atoms are neutral br'if the electro-
magnetic field is oscillating rapidly and has zero
time average, provided that the effects of atomic
recoil when a photon is emitted of absorbed (called
"photon reccil", for short) are negligible. The
" neglect of photon recoil is generally a good approx-
imation at opticel frequencies; hoWever in’high
precision experiments on long lived systems; photon
recoil terms may have some significance;6’7
Although we ‘have compiled a long list of
approximations or assumptions, there are many situa-

tions of interest where most of them apply. Methods



—ll -

for relaxing some of the above restrictions will

be given in Sec. V. However, the theory is directly |
‘applicable to a study of the'effects of foreign gas
collisions on optical or near optical atomic line

shapes associated with low density atomic systems.
Method of Approcach

Rather than degl with the density métrix of
a8 single atom as we 4id in QMI and II, we shall con-
sider the macroscopic density matrix for the entire
ensemble of active atoms. Considering this density
matrix p(g,z,t) as a function of independent classical
variables R, v, and t, we shall first obtain‘a
partial differential equation for p(R,v,t) when colli-
sions are absent. Collisions‘will then be incorpor-
ated into this partial differential equation by

addition of a term 30o(R,v,t)/3t) which is cal~

coll
culated using an interpretation of the results of

QMI and II. The resulting partial differtointegral
equation for the classical macroscopic density matrix
p(R,¥,t) will be referred to as Quantum Mechanical
Tra.fisport Equation (QMTE) since it will contain the

guantum mechanical iine shape parameters (i.e., colli-

sion rates, widths, shifts, kernels) of QMI and II.
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Alternatively, one might call it a pseudoclassical
transport equation in line with the presentation

of QMII.
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ITI. DENSITY MATRIX EQUATION WITH NO COLLISIONS

Tt is our aim to proceed from a quantum mechanical
to a classical description of the atom's center-of-
mass motion. To accomplish this task, we shall
first derive a time evolution eguation for an atom's
density matrix in which the center-of-mass coor~
dinate R is a quantum mechanical variable. ‘We shall
then obtain an appropriate classical limit to this
equation in which the quantum mechanical varaibles
R and P = (h/1)3/8R are replaced by the corresponding
classical variables. It should be understood that
when we speak of a "classical 1imit" or "classical
density matrix" we are referring to the center-of-
mass motion only; the atom's electronic state.spectrmm is
always taken toc be guantized.

In the absence of collisions, the quantum mechan-~

ical Hemiltonian for the jth atom 1s of the form

g 2 2 '
H(fj,gij) = Hb(ﬁj) - (n /2m)§é¢}

+ AV(EJ:BJ"{;) » (1)

where Xy stands for all the relative electronic

coordinates of the jth atom, Ho(gﬁ) is the free

atom!s electronic Hamiltonian sssumed to possess
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eigenfun@tiena @m(gj)ﬁ Ej ig the atom's center?
of 'mass position, ¥ is the gradient with
regpect to EJF m is the stom's mass, and

V(gjygj;ﬁ) represents the atom= iield Jnteractlon
(assumed not to be a function of momentum).

We may expand the wave function of the atom as

and, from this expansion, form the density matrix

elements in the interaction representation defined

by
= a9(m. . tyad b
cwr,'(R L) = Acs<%j’ )fl r(RMt) e % (3)
with o, = o - @, and @ is the eigenfrequency

of state a. Using Schrodinger's equation, it is
then an easy matter to derive the following equation
of motion for the density matrix elements:

45 ‘“’j — - ,N“
in 3%5,:(Ry,8)/38 = - 1nY Jgag@j,t)

+ {ﬁ(ﬁj»t)»ﬁj(ﬁjﬁt)}aa? (%)
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o~
and the maltrix clements of V{gj,%} are given by

ﬁ;@t(gj,t) der A (rj) V(rj,R t)¢a,(r ) et @mgt
(6)
Note that 33 is a quantum mechenical variable.

In Appendix A, we show that, provided the field
interaction V(gj,gjﬁt) does not affect the atom's
center-of-mass motion, (as has been assumed in Sec. 11}9
a classical limit for Eg. (&) is

3505t (B ij‘;/at = - m"lgg.oyaf H(BysBye )
+ (in)~ {V(R t) (ijﬁ)gﬁaﬁ
(7)

in which 53 and Ej are classical variables for the

s
position and momentum of the j“n atom, respectively.

The quantity 5§ag(gﬁ$§j,t), in effect, represents
the amount of the atomic density matrix that one may
associate with the volum@ ﬂgRj d3 j in phasze space.

In other words, (Rij st) is the density in phase

amf
space such that fdJRJGBPJ “m@(?a_; JByet) = B (%)
the aa' atomic density matrix element. - Thus, Eq. (7)
may bé though of as a trangport equatibn that gives
the time rate of change of atom j's density matrix
elements when there are no collisions. The commu~

tator in Eg. (7) represents the external field
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. N | L oond _
contribution while - m Ej gpimg(gj,gj,t) repre
sents the convective contribution to the time rate
of change of 6£agiﬁjsfjjt)k

Although Eq. (T7) was derived for a single atom,
it will serve egually well for the entire ensemble
since each atom is assumed to interact independently
with the field. That is, the macroscopic density

matrix element defined by

-~

Bt (RoBst) = 2 j‘dBR:}dJPJ ﬁgag(@j,gj,t} 5(R"R;)
X 8(P-Py) |
3426 ﬁéms(g 9? 5t) _ ‘ (8)

will also satisfy Eq. (7). The summation in Eg. (8)
ig over all the active shtoms in the ensemble so thsat

the normalization assumed is
T Ja%RaP o (R,P,t) = N(t) (9)

where N “sbthe total number of active atomg in the
engsemble at time t.

It is sometimes convenient to include some
additional terms in Eq. (7). 1If the system or sub~

system under examination is not closed, one mey
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introduce an injection or excitation rate density
Amag(g,f,t) and some phenomenologlcal decay or

escape rate Tda,(g,g,t) for the aa' density matrix
element [it 1s assumed thal nelither Amm'(§!§’t)

nor T, ,(R,P,t) depend on Pt (BsPst) ], (The exeitation
would be termed "incoherent" if A _,(R,P,t) = bt )
When the injection and loss terms are included in

Eg. (7) and terms are suitably redefined so that

the velocity v = g/m ig uged ag a variable instead

of the momentum P, Eg. {7) becomes

e

200t (R V2 8) /%) 0 011 oot (RoV,t)

" Taat (BT, %) E&af{g’Y’t) - Y"Zs&a‘\g’Y’t)

£ (in) HT(R, 1), B(RE)] (10)
where A, ,(R,v,t) = Aoyt (BsV, 1) exp(in_,t), (102)

R and v are classicael variables, and coll is an
abbreviation for "collision". The initial conditions
for Eg. (10} must be chosen for e&éh.problem. In a
closed system, A ,(R;v,t) = O and Toqt(Bs¥,t) =0

80 that excitation and decay can arige only through

the field interaction V(R,t). For such a systenm,
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E;ag(ﬁ,g,“m) mway be taken as an equilibrium or whatever
other distribution is believed to characterize the
active atoms before the external field interaction is
"turned on". For open systems or excited state sub-
systems (such as those considereé in lasar‘problems)
one may take 5@@“{?’Y’mw) = 0 and allow Xaa,(g,g,t}

to provide the excitation to and T,_,(R,v,t) the

decay from this subsystem.
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iv. INCORPORATION COF COLLISIONS -
QUANTUM MECHANICAL TRANSPORT EQUATION

8
It wmay be shown that, in the impact and binary
collision limits, the time rate of change of B (R, V,t)
is given simply by

aﬁam*<§’z’t)/at = apam’(§’g’t)/ét)no coll

+ BB (B To8) /28] 0001 (11)

where the "no collision" contribution is specified

by Eg. (10) and it reumains to evaluate the collisional
contribution aﬁaag(ggg,t)/Bt)COll, In general, the
collisional interaction will depend upon the atom's
electronic wave function (i.e. an active atom may
experience a much weaker interaction on collision with
a perturber if it (the active atom) is in its ground
state rather than an excited state.) Consequently,
one must deal with a gquantum mechanical rather than
classical treatment of the center—of-mass motion.
However, the results of QMII may be used to show that,
by studying the collisional changes in the guantum
mechanical density matrix 5(§,t), one can reinterpret
the results in terms of a classical density matrix and,

in doing so, infer values for aa&aﬁ(R’?5t)/ét)coll“



An alternative quantum mechanical calculation which
may also be interpreted as providing values for
apaa'(E’Y’t)/at)coll is given in Appendix B.

From either caiculation, one obtains

~ ’ V h ~ g
apaa'(g’y’t)/at>coll = —Yga'(y)gaa'(g’y’t)

- TV () Byt (Bovut) + [adve W (viv) B (RvE,%)

(12)
with each of the line shape parameters yggg(y),
aa'(v) and W ;(v'-v} to be discussed below.
The complex line shape parameter Yma'(v) is
given by
h 3 h h ¥*
Yoot (¥) = [&v,u (v) (35 (v,) + %r};a(yr)
where ’
h s
Ry) = m (/i) 2, (v, (14)
Vp = V- Yp’

Wb(g?) is the perturber velocity distribution, u is the
active atom - perturber reduced mass, fa(yr—yr') is

the state a scattering amplitude for e particle of

mass W, n is the perturber density and the superscript ph
stends for "phase-shifting collisions". To be guite

ph -

general, we have assumed Yoo ! and Tgh are functions of
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the velocity V. However, if the acattering ampli-

tude fa(yr ﬁ) is a function only of v, and the
engle between Yr and Xr and, in addition, if Wb

is a function of speed only, then yggs and Tgh
(as well as rggg te be discussed below) will be

functions of sveed rather than velocity. 'The
guantity y Cv) contains the standard quantum
mechanical width and shift of impact broadening

theory9

which arises when one considers collisions
which induce a rélative phase shift between the
a and o! state amplitudes but result in no change

in the velocity associated with 6;&,(§,y,t).b Such
collisions are termed phasge-shifting cnllisions and
manifest themselves in the line shape parameter

Yol (v). Note that YE2, affects only off-diagonal
density matrix elements since for a = af, th = 0.

ao’
The quantity Wda,(g'*g) is given by

Voot (L7=¥) = n(m/)” fdj ’deV g)vrml
B 1 - < ' g e
X 8[v, + (m/mp)g (mAu)v + Yy I 8(v, —v.")
. . v * 15
ERCRENE N CRES (15)
where
vl o= oyl =g
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and m and mé are the active atom and perturber
masses, respectively. If a = a', Wda(z'—y) is

real and represents the quantum mechanical proba~

. bility density or collision kernel for aucollision
to change the velocity associatéd with an atom in
state a from v' to Y. However, if a # a', W&a,(g’fg}
is complex and possesses no simple physical inter-
pratation of which we are aware. For thié case,

one might write
W@av(?f“z? - ‘Wda'(z}“Y)l-eXP[iXaar(Yt’Y)]

with x ,s(x'~v)} a real phase shift. In this form,
W@a'(X'“z) appears to be the product of a real
collision kernel |W,  ,(v'-v)| and a correlated
effective average phase shift factor éXP[iXaa:(X'“E}E
so that one could say that the complex "kernel®
Waa,(y'wy) is related to collisions that simul-
tanebusly result in a phase shift for and change
in the velocity associated with §;a,(§,y,t). Un~
fortunately we have found no'simple classical ana-
logues for either !Wda,(g!wy)i or Xaa'(z'“y) S0
that the usefulness of this interpretation is

guestionable.
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The line shape parameter ng,(g) is

ve 3 3
Toas (V) = fd_vfwaa,(yuyi) = nfa vap(yp)vr
% gaa’(;‘fr) ‘ | - (16)
where , ‘
*
Ot (¥p) = fdﬂ'wr,fa(yr-'yr‘)fa:(yr-*'zr’) (16a)
wr = X - Yp‘

For a = a' , TZ;(y) is real and is just the rate

at which velocity changing collisions occur for

atoms in state a moving with velocity v. For a # a’
rym'(y) is a complex "rate" and lacks a simple inter-
pretation in the same sense as did de,(g‘ﬂy) for

o Fat,

We should note that it is possible to separate
those velocity changing collisions which significanﬁly
alter B&a’(g?Y’t) from those which do not. The benefits
of this cutoff procedure which was used in QMI and II
and the necessary alterations of the equations which
it entails are discussed in Appendix C.

Although Eqs. (13)-(16) lend themselves to a
first principle calculation of the line shapé
parameters, it would be very difficult to~perform such

a calculation since s knowledge of all the quantum=-

mechanical scattering amplitudes is needed. Methods
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for simplifying the evaluation of the lineéhape
parametérs will be given later in this éection.

When Egs. (10) and (i2) are inserted into Eg. (11), we
arrive at the Quantum Mechanical Transport Equation

(QMTE)

3Paq (BYs) /3t & VT8, (Ry7,) =

aa'(R v,t) = Thqt(Bs v,u)paa,(R v,t)

N -J- agd ~ h ~* | K
+ (1h) [Viﬁ:t)sp(lﬁst)}aa; - Ygat(‘f)?aat(?}ﬂf» t)

I‘aas(v)pcx.a'(R V,t) + rdBV'W (.‘[""Y) paat(I}’T{%ﬁ}
(17)

in which the contributions to 39,,.(R,v,t)/3t due

to convective flow, injection,'phenomenclogical loses,
external field interaction and cellisional inter-
actions have already been discussed. As can be seen
from the equation, a velocity is associaﬁed;with

each density matrix element rathei than with the
atom’as‘a whole, This feature is a direct conse-
guence 6f the gquantum mechanical treatment of state
dependent collisional interactions. Since collisional
interaction is different for the different eléctronie

states, the velocity changes assoclated with different
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density matrix elements will &lso differ, rendering
it impossible tavassign a single velocity to an.
entire atom which has undergone a collision. Eguation
(17) is the basic result of this paper and’pfdvides
the starting point for calculations involving the
interactidn of radiation fields with atoms, allowing
for collisions of the atoms. 'Iﬁ has been derived
and is valid under the approximations of Section II.
We shall discuss some applications of the'eqﬁation |
in Section VI. For most probiems,:it willsbe all
put impossible to solve the QMTE unless additionsl

approximations are incorporated.

We now list some conditions under which it will
be possible to simplify the expression for the line
| éhgpe parsmeters which appear in Eq. (17):

1. Collisional interaction in one state only -
In some ihétanées, only one of the states under
, considération'may experience a strong collisional
interaction. (Fof example, in atomic absorption'
or emission experiments involving‘é transitian»
betwegn'the ground and an excited state'of'an.atom,

the collisional interaction in.the;ground'State
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may be neglected in first approximetion.) Labeling
the strongly interacting state "a", Egs. (13)-{16)

become, in this limit,

R
. h - .
*[él‘g (v7vy) ~ HEN¥Y,)1  (18e)
W&a!(3’1Y) = (v dv)éaa ara (18b)
Toar(¥) = (v)éaa afa - (18c)

with both W (v'«v) and T (v) real, Under these
circumstances there are no collisional velocity chenges
éssdciated with off-diagonal=densiﬁy matrix'elementsm
The éimplifications and consequéhces of this feature
have been discussed in QMII. In géneral, one might

try this approach as a first approximation when
dealing with tranéitions between two electronic levels
since it is likely that one of these levels exper-
iences & significantly stronger c§1lis16nal:intéracti0n

than the other.10

2. Equal collisional inte;gcfion for‘ail states -
The other extreme, valid to a first approximation when
all the states under considerationibelcng'té the
same electronic level (as do different vibrational

states of a molecule) is to take the collisional



interaction equal for all the states. In that case,
Yaa'(v) 0 and both W_,,(v'~v) and rzz,(g) are"
real and independent of a and a'. This is‘a.true
transport equation limit since the collisionél
interaction is no lohger state depeﬁdent and one

can associate a velocity with the entire axbm rather
ﬁhan with individual density matrix elements.

3. Classical limits - Siﬁce we are dealing

with atoms, it is usually valid to evaluate Egs. (13)-
(16) in some classical limit., The prescribed method
for taking the classical limit would be to evaluate
the scattering amplitudesvthat appear in Eqs., (13)-(16)
in either the WKB or eikonal approximation. Of
course, to perform such a caléul&tion, a knowledge
of the emitter-perturber interaction is needed'and
this, by itself may constitute a very difficult
auxiliary'problem.

An alternative method of calcuiation'is to use
the standard classical ez’q:)ress:Lonl:L for yph,(v) given

by

am'(v) = hjd3v \J (VP)lv*v lFZWbdb

* {emling (2, 7Y) ~ xga(Brgy)] <31
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where ¥ (b,v,) and xq,(b,yr) are the phase shifts
produced in the a and a! levels,;respectively, by

a collision with impact parameter b and relati#e
velocity Voo The line shape parameters w&a(g'my)

and rzg(g)'may be obtained by determining a classical
kernel for the collisional interaction experienced

by an atom in state a. There is still the Qroblem
of evaluating W, ,(v'~v) and rz;,(g) for a # a!f

since these quentities have no simple classical
analogues. Hence,’unieés ap?roximations {1) or {(2)
ve

above may be used, W ,(v'~v) and T

be evaluated by either the WKB or eikonal methods

(v) must still

for a # a',

4., Other approximations - The classical limit

described above still 1eaveé formidable calculations
in most cases. As a first attempt in understanding
the role of collisions, some coarsér approximations
may be used, For example, phenomenclogical wvalues
for Wda,(g'dg) and rﬁi(y) may be used in conjuction
with either approximations (1) or (2) above. These
values may be based on either "strong" or "weak"

collisional models.12

There is the danger that some
ccliisional effects may be lost if such models are
employed.

It may also be possible to do perturbafidn

expansions with the line shape parameters.  That
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is, if one is dealing with transitions between dirf-
ferent electronic states where approximation (1) is

thought to be good, he could assume W__,(v'=v) and

ve
rda'

their value, and keep only leadingfterms in these

(v) are small for @ # a', make some estimate of

quantities when solving Eg. (17). On the other
hand, if approximation (2) is thought to be applicable,

then, for a # at, ygg,(y), W&a,(g'dy)-Wda(gj4g),

rve

aa,(y)-rzg(g) should be taken as small quan~

and
tities in attempts to solve Eq. (17). Each problem
must be considered separately to determine the manner

of getting maximal information with minimal effort.,
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V. EXTENSIONS OF THE-THEORY

The theory may be extended by relaxing some of
the approximations of Sec, II. The numbered pars~
graphs below correspond to similar paragraphs in
Sec. II, where the approximations were listeé.

(1)-(2) Due to the ultimate importance of the
binary cecllision and impact approximations in this
theory, we feel that another approach would be needed
if either of these approximations fails, ’

(3) In this paper, we have not allowed for any
collision induced transitions. While collisions
cannot, in genersl, produce transitions between
optically separated levels, they may cause resrrange~
ment of magnetic, fine structure, or rotationsal
substate populations of a given electronic level
of an atom or molecule. Thus, it is highly desirable
to include rearrangement cr inelastic collision
effects in the QMTE and we hope to perform such a
calculation in the near future. The major problem
involved -is keeping track of the center-of-mass
velocity associsated with each of the substate density
matrix elements. It may turn out that, on average
the velocity associated with each substate densiﬁy
matrix element is the same after the collision. In
that case, the inclusion of rearrangement effects

could be done in the same manner as for stationary
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8

active atoms, However, it remains to be seen
whether or not the actual calculation will yield
such a simple result.

(4) If one wished to allow for rescnant exci-
tation transfer in collisions, he would have‘ﬁc study
the guantum mechanical problem of the collision of
two atoms which may exchange excitation asg a result
of the collision. A study of the change in each
atom's reduced density matrix resulting from the
collision may then yield an interpretation in the
change of the classical density matrix ﬁéag(g,y,t).

(5) In situations where atoms were excited
coherentlyb(in the sense that the density matrix
of a given atom just after excitation was not inde-
pendent of the density matrices of the other atoms
of the ensemble), one would have to deal with the
ensemble density matrix of the system and then perform
the appropriate traces to get the reduced density
matrices of individual atoms. Similarly, if one
allowed for excitation by radistion trapping, ﬁhe
excitation mechanism would depend on previous values
of the density matrix. A method for incdrpprating
radiation trapping into the équation for‘gaa,(g,g,ﬁ)
by means of an integral term has been given by

Dyakonov and Perel,l3 and they have also noted that
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such effects may lead to modifications of lasér
line shapes,la

(6) We have assumed that the external field
does not affect the center-of-mass motion. The effects
of an external field that affects the center-of-mass
motion in a state independent manner (i.e., a
constant electric field aéting on an ion) méy be
easily incorporated into the QMTE by addition

to the lhs of Eg. (17) a convective term
m TF(R, )W 5. (R, V,t)
._,\ W:J va‘xa" -3 .

in which F(R,t) is the force associated with the
external field and Yv is the gradient with respect
to velocity. However, if the external field?atom
interaction were state dependent, a gquantum calculs~-
tion of its effect would be necessary after which it
‘might be possible to reinterpret the results in
terms of a classical density matrix B&a’(g’Y’t)’

as was'done for the collision case. An alternative
apprcach for treating such fields as well as photon
recoll effects is through Wigner of guantum "distri-
bution" functicns,6’15 Care must be taken in the
use and interpretétion of these functions-since they
are not positive definite and, conSequenfly; cannot

be regarded as true distribution functiohs.'
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Of course, inclusion of any of the above
extensions will complicate the thedry. The nature
of the specific problem and effects under cbnsi"
deration will determine which, if any, of‘these

extensions need be incorporated into the theory.
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VI. DISCUSSION

In this paper we have derived a ?seudoclassical
‘or Quantum Mechanical Transport Eguation (QMTE)_fow
the macroscopic density matrix of an atomic system
subject to the restrictions of Sec. II. This treat-
ment differs from that of QMI and II since the theory
is no longer presented &s a perturbgtion expansion
in the external field. In additioh, we have directly
allowed for collisional interaction in more than one
state in deriving the QMTE while the caleulation of
QMII stressed the limiting case of collisional inter-
sction in one state only.

By working with the macroscopic density matrix,
we have cobtained a rather compact differentéinfegr&l
equation for its time development, in contrast to
the somewhat complex.eQuations encountered iﬁ using
the Pseudoclassical Collision Model (PCM) of QMII
to follow the microscopic density matrix's time
development. It éhould be noted, however, that the
PCM does provide a greater physical "feel" and
understanding fdr the problem under considefation.

 As noted in the Introduction, a knowledge of
the macroscopic density matrix is usually sufficient

to obtain theoretical values for many experimentaliy
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measurable quantities. If one is dealing with
weak external fields, he would probsbly try to
solve the QMTE by &n interativé approach and this
procedure would, in effect, be equivalent toj
using fhe PCM. For strong external'fields’the PCM
is less suitable and the GMTE should provid§ the
starting point for the calculations. Tt is hoped
that one wiil be able to use the QMTE toc solve
probléms involving the interaction of high intensity
laser fields with atomic systems in which qqllsions
play a significant role. Waturally, any solutions
of the QMTE are difficult to obtain and, most likely,
one will have to use very simple collsion models
in the first attempts at these calculations. Anothmr
use of the QMTE is the evaluation of atomic épectral
profiles, Here it tufns‘out fhat-fhe calchlations are
guite feasible but that results}are more easily
achieved by use of the PCM of QMII. The.detaiis of
the calculations will be presented in a subsequent
work., | ‘ , ‘

The applicability of the QMTE will;be:enhanced
if it is extended to include collision indﬁ¢ed
trans;tions, and some work along this line would
definitélyvbe gppropriate. Even és it stands, the QMTE
should'prévide a useful starting point for éolving a

certain class‘of.problems in atomic physics.
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APPENDIX A - CLASSICAL LIMIT OF EQUATION (1)

Starting with Egs. (4) and (5) of the text

(dropping the j subscripts)

LT R SN D
+ {V(R t),p(R t)}ma, (a)
with | , B
Jaar (B8) = n(ami) A (R,1) 98, (R %)

- 8, (B, t)TAL (B, 8) “16%aatt,  (a2)

we wish to determine a classical limit for this
equation when such a limit does, in fact, exist,
- The quantity 0yt (Rst) is the density matrix element

of an atom which 1s interacting with an extefnal

field (but not undergoing collisions). If we are to
consider this atom_as a classical particle,;itbmust
be localized in space. The only way this atbm can
remain localized in space is if the external field
affects the center-of-mass motioh in a state inde~
pendent menner., Otherwise, the field would Be con~
stantly acting as & state selector, and the atom
would disperse. Since an assumption of our theory is

that V(&,t) does not affect the center-of-mass motion
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at ail this problem does not ent er our consideratiom& ]

" and we are able to look for a cla351ca1 limit to Eq. {Al}
' Let us first consider the current J ,{§‘t)

Recalling that the function A (R, t) as.g;vehdin |

BEq. (2) is analcgous to the wave function'in‘benter“

of*mass)coordinaté space.for an atom in staté o, we

write~Ad(§,t) in terms of the corresponding momentum

state wave function. That is,

8 (B, ) - (em)3/2 Jadp ep;(,l?;t)e:(i’,’"‘)f'g (a3)
which‘ieads to a value

Ty (Re8) = v<i/h)(2-’m)-3,/ ? Ja% po (p,t)eM/PIEE
The évergge momentum of the paéket is given by ,

’<g>t = fd3P flm@(g,t)ig - | - (A5)

where the t subscript is a reminder that <F§;is an

explicit function of time. The fact that <p>, is in=
dependent of a is a conseguence of the assumption
that all states follow the same center-of-mass

trajectories. Setting P = <p>

. + P - P>, in Bq. (Ab)
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and using Eq. (A3), we obtain

VA (R,t) = (1/m)<PRA (R,t) + (i/b)(2wn) 3/2

x Ja3R(p-<FR)n, (B, ) IR,

Since we grebéeeking a classical limit, we assume
that ma(g,t) is a sharply peaked fﬁhction centered
about <P>, so that the integral term in BEq. (46)
may be neglected. In this limit. Eq. (A2) for the
current becomes

3 Lpy @ , :
Tpwr (Bot) = mlPy B (RE) (A7)

where Eq. (3) ﬁas been used.

The next step is to eliminﬁte the guantum
variable R asppearing in Eq. (Al) in favor of a
classical variable <R>., Since the center-of-mess
motion for all the states is assumed to be identical,

- one may write
~F o~ P 2 @r
where #(R,t); which‘gives the o independent spatial

extent of the packet, is normalized in the sense

that

fedRra(R,8) = 1 ~ | (49)
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where thé integral is over a smallvregion of space
containing the packet. The packet 1is assumed to be
localized in space about

®> = [a°R RE(R,t)

“and we expand both S(g,t), Giggt), and §;a'(3’t)

about this value - li.e.

B(R,t) = o(<®t) + (RBP) TR(E,E) + ..e...,(4208)
T(R,t) = V(<®,t) + (R-<B>) (B>, t) + ......,(A10b)
Tugt (Bot) = T,00 (B>, 1) +[(R-<®>) 9, . (<®>,t) + ...(A20c)

Substitubting these expansions intc Eg. (Al), using

Eg. (A7) for §da'($’t)’ multiplying the ehtire equa-
tion by‘é(ﬁ,t), integrating the resultant équation
over g spatial region containing the packet;~and keep -

ing only'the leading terms of the expansion, we obtain

28yt (B,E)/BE = (<P /m) Ta, (B, )

+H1n) V(<L 1), BB t) 1oy (A11)

It is important te note that, 1n.deriving this
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equation, we have treated <§> as an independent
varisble while <p>; is an explicit function of time.

The density matrix in phase spece is simply given by

Pues t

B(E, <P, t) = BB, t)e(<Pro<B>) 0 (al2

where <P> is also an independent variable. Using
Eg. (All) and (Al2), it is an easy matter to show
that 9, ,(<R>,<P>,t) satisfies the equation

B0yt (B> <B>,t) /5t = ~(<B>/m) Vo, (B>, <>, )
‘ ~ -G
+‘(d<@>t/at)'y<P>paa,(<§>,§§?,t) + (in) ~*

X(V(<B, <>, ), F(<B>, >,1)] (a13)

Taking d<P>./dt = O as we have assumed and changing
variables from <§>; <P> to R,P, one arrives at Eq. (7)
of the text.

One can show ﬁhat the errors introduced by
neglecting the integral term in Eg. (A6) as well as
higher order terms in the expansions (10).will be
small provided the de Broglie wavelength of an atom
is much smaller thén the characteristic spétial

variations of 5(R,t) and G(ﬁ,t}. Thus, Eg. (AlB)



will be wvalid if most of the ensemblie atoms possess
this property.

We should pbint out that the entire approach of
~ this section will fail if the external potential
affects the center*of?mass motion in a state depen-
 dent manner.l6 In thé next Appendix,'it'will_be
shown that collisions act in precisely this way.
However, the puréose of this section was to derive
an equation for g;d'(ﬁ?f’t) that was valid in the
time interval between collisions, in which the clas-
sical limit, as discussed in this section, is,

in fact, wvalid.
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APPENDIX B - DERIVATION OF

3 S(B’Y’t}'/at)coll

Although the value for 33(R,¥,t)/3) 011
given ig Ed.(12) may‘be inferred from the results
bf QMII, we thought it might prove useful to indie&mé
an alternative derivation which involves computing
~the change in the density matrix resulting from &
single Céllision. Both developments depend strong-
ly on the binaryAcollision and impact approximations
for thier validity.

‘As mentioned in the text, we must perform a
quantum mechanical caleculation for the state dependenﬁ
collisional interaction. To examine the role of
collisions, the effects of the external field are
ignored in this calculation and the Hamiltonian

for the jth atom is (again the label j is Suppressed}
H(r,R) = H(r) + P°/em + U(r,R) (B1)

where U(g,g) is the potential due-tc g single perturber
fixed at the origin of the coordinate system. (For
simplicity, the case of a fixed perturber is treated.
Generalization.to the case of moving perturbers is

discussed later on in this Appendix.) The wave
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function is expanded as
-iw T

HERE) = A (R D) () e ™% (52)

and, using Schrodinger's eguation, it is easy to

show that A (R,t) obeys the equation

-~ A "~ 0,,", “
i, (R,t) /6% = -(v°/2m) v°3 (R, %)

' o A ‘
+ U (R)A (R,t) (B3)
where | -
. R #* ‘
UpalB) = [0 §,(2)0(x,B)¥,(x) | (B4)

and we have used the fact that there are no colliéiam'v
induced transitions to take U as‘diagonal ih the
atomic states. One can see thaﬁ each.@&(g,%) obeys
its own Schrodinger equation with potential U, (R).
Hence, we can do a conventional scattering calcula-
tion for each E&(g,%) and then form the approﬁriate
density matrix elements. Let us assume that the
collision occurs at % =t and that'atr% = t -8t
each E;(g,t-at) describes a wave packet of cross
sectional area ¢ which is moving towards the
scattering center with average velocity v! and has

extent w in'g‘ direction, The size of this wave
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vacket is large compared to the scattering center
(so it won't spread significantly) but still
localized well endugh in space for a classical limit
-to be aﬁplicable‘in the sense of Appehdix A, At
% = t£-8t, the packet is centere@ about 50 = =~yis%
and is assumed to be well isolated from the scat-
tering éentef as well as from other perturbers.
For this situation to exist, the binary collision
spproximation must be applicable. |

By using conventional time dependéntvscattering
theory,17 one may show that, at time % = t+8t (after
the collision.), |

A (R, t4bt) = exp{-(imv'?/2m)(28t))

X[ (R-2v'6t,t-5t)

&

£ (g’dv'ﬁ)
+ R

& (Rv'-2y'st,t=5t)]  (B5)
where fd(gfav’R)-is the state a scattering amplitude.

The two terms in Eq. (B5) simply represent the unscat-
tered and scattered packets, respectively. The scat-
tered packet is confined to a spherical~shellfef

- width w centered about R = v'6t. The density matrix
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elements are given as

~ ~ -~ P2

and one may calculate the changeiinathe’densiﬁy

matrix elements resulting from the collsion’

88,1 (Ret,88) = 8 1 (R, t48t) = 0, (R,t=5t)

= ot (RT2YISE, ;-6t) = Byt (R, E=bE)
=1 o1 RY¥ R (Rt - e + PR V¥
+ R “f_(y'-v'R) A (R-2v'st, t 5t) Au,(Rv ~2vigt, t-6t)
1o (vieyiB) A (RO1-2vist,tegt) A ,(R-2v'st,t-6t)"
+ R E (Vi o (RV! 206t 85t ) A, (R2v!6t,o0t)

= . .. )
+ R efa(g‘ﬁv'R) £,0(V'-VIR) D, {Rv'-aviet,t-6t)  (E7)

We must now interpret this result. The first
step is to set [E&a,(g“eg'ét,.t46t) - E&a;(g’ t“ﬁt}]
equal to zero since, in the limit 8t » O, this term
repiesentsAno Chahge in the velocity,'pdsiticn,‘or
density matrix element value associated with the
packet. The other terms in Eq. (37) contain scattering
amplitudes and may be thought to exhibit an "instantan-
eous" change in the velocity or value associated
with’each density matrix element due to ﬁhe collision,
To get the amount éf density matrix element associated

i "N
with a range of velocites centered about v = v'R
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(noté‘that'v = v'! since the perturber is fixed

and the . ooiliSion‘elastic), one must multiply'ééch

of the terms on the rhs of Eq (BT) by R dﬂ/b,

which is the area associated with this solid. angle @ '
normalized to the cross sectional area of the initial
packet Ascribing the classical variable v to

-scattering in this direction, one meay rewrite Eg. (EW} as

~ ’ «l“ » ¥ e - : _
8 Paqt (R:¥,,88) A0, = Ro “f,,(¥'=v)" A (R-2v'bt, ©-st)

~  »~ *
bt Aa,(Rv'*eg?ét,t-ét) ao.,

] . o .
+ Bo £ (v'-y) A (RV'-2v'st, t-5t) A ,(R-2y'st, t-5t)  do

.- ~ '
+ 0 L (vI-V) fa.(zc'*}r) Bt

All the terms in the rhs of this equation relating to
A o (R, t-8t) correspond to the initial packetgwhich hed
velocity v' associated with it. Explicitly, indicating

g’ ag .a variable and dropping the dov; one obtains

8Py, 1 (R T, V!, E,88) =

- * ~ ~
Ro lfa,(g'ag) A (R-2v'6t, v, t-sti) Aug(R$'-2X*ﬁtfg¥,t~ét}
“1 4 ' 4! Dart H . 'd ®
+ Ro © £ (v'-v) A (Rv'-2v'st,v!,t-st) A ,(R-2v'6t,y',t-st)

le (v'ﬁw) £ ,(v'av) ,(Rv'*zv'at vi,t- at} (B@}’

(Rv'"ev'at t-st) dn, .  (B8)

3%
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To get an average 6p(R,Vv,t,8t), one must allow
for all directions v' of incidence for the packet.

Performing this average, we find

'66(1“, (§’¥3t’6t) 2= (5'6&&;(%;3{3‘!:,‘5:8{;))
-1 v * 5 NEE vl - 4 a8 =l ol pege) T
Ro [0y £o(v1=w)" A (R-2v'6%,¥',t-5) A ,(RV'-2v'5t,v', t-5t)
+ Ro Tfdn_, £ (v'~y) K (RT'-2y18t,y1,t-5t)
~ *
x A y(B-2vist,v',t-5t)

-1 . . * A .
+ o fd@v,fa(g'ﬂg) £ (V=) gla,(Rv’~2g‘5t,¥?,t*&t} Q(E&O}

The integration in the first two terms is the same
type that appears in derivations of the optical
17

theorem," One makes use of the fact that there is
rapidvinterference in all but the 3' = 6 directlon
to evaluate these’terms, and when the resulfs of
this calculation are inserted into Eq. (BlO), it

becomes

it

8 Pt (Rs Vs b, 8t)
-1 , * ~ A
o “[(2m/imv) fa,(g~y)] Onqt (RV-2¥8L, v, t-st)
“c-l[(EWh/imV) fa(Y*Y)]Ega,(R§’2ﬁ5t: v, ﬁ'ét)
A ) '
(RV!-2v16t,v!,t75%)

(B11)

-1 ‘ * o
+ g IdQv, fd(z’ay) fa,(z'“Y)' Prat
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where fa(X“Y) is thé forward.a*étate scaﬁteripg amplitude.
Equétion (Bli)'représents the changeAin ﬁami(ﬁﬁz,t)

provided a collision occurs at time t. To get

the average collisional change in E;a,~in a time

sT>26t we must multipiy Eq. (Bll) by the average

number of collisions 0¢curring in &7, which is given

by hvebT where nh 18 ﬁhe perturber density. ,When

this is done, . the limit 8t 5 0,8t =* 0 is taken,

and the transformatidn from the quantﬁm variable gxﬁb“ -

the classical variable §.is rerformed as in-Appen&ix A,

one obtalins

3’5 1 (R: V,t) . ’ ’
QUL ° Ve "
3t )coll =7 W(Q‘n‘h/imv) [fa(X“Y) “Ea (v=v) "1

d - ‘ .
X ot (Rov,t) + W [ da , £ (¥v'=y) £ o(v'=¥)" #

Admittedly, the derivation of Eq. (Bl2) has not been
overly rigorous. However, it does provide a Tairly
simple way of arriving at the Quantum>mechanicalv
collisional rate of change of the density matrix.

The general velidity of this proéedure~forlcalculaxi@n
of aE/Bt)coll'and its subsequent use in thevtext

is based on the binary collision énd 1mpact approx-

imations, as has been discussed inian earlier work.
Although Eq. (Bl2) was derived for a single atom, it

is also true for the ensemble since the atoms act

independently of each other.
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For,reascns related to separating phase-shifting
and velocity-changing collisions, which will become
clearer in Appendix C, we add and subtract a term

VA¥ ~t ve . ‘
Taai(z)paa'(§’f’§)__{Tﬁa' will be §ef1ned below] to

Eq. (El2) and rewrite it as

e \ - h ~7
apa,C{.'(E’Y_’t)/at>coll = Yga!(:{) paai{g’:{!t)

ve ~ | ~ Y
‘raa’! (v) paa' (E!Y_’t) + j‘dﬂvlwaal (xqu) paal (?}zi 3{5}

(B13)

where
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VB (v) = nv(2mn/inv) [fa(y~!5 *fa,(zfx)*]

Taa !
*
‘ *
Wogi (VI-7) = w £ (Y1) £ (0TY) . (Blhb)
and A o ‘ ‘
Tyc (v) = Jao_, W (v«v') (Bllc)
aafr~/ T JT¢t Tgatiao . : v /

These results may be generalized to the case of wmoving
perturbers by performing the scattering calculation

in the center-of-momentum frame and then tr&néferring
back to the lab frame. The resultant expressions are
given in Egs. (13)~(16) of the text.

The diagonal density matrix elements obey the
usual transport eqﬁation, but the off-diagonal terms .
obey an eguation without a classical analogue. By an
entlirely different approach,'Smifh and cbworkers18 have effec~

tively derived an equation for the off*diagdnal density
matrix elements which can be shown to be in agreement

with our results.
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APPENDIX C - CUTOFF PROCEDURE

In QMI and II, collisions were broken down into
two categories - those which significantly affect
0,0t (BsVst) and those which do not (the precise
definition of a "significant" collision will be given
below) ‘The usefulness of this approach 1is that it
leads tc a separation of phase-shifting c0¢1*sions
(with no velocity change) and veloclty°changing colli-
sions (which may or may not be accompanied by a phase
shift). In addition, the cutoff procedure used to
establish the results of this Appendix will assure that
the rate for velocity-changing collisions will no
longer inciude ﬁhosé collis}ons producing slight changes
in velocity which have no real physical importance
for the problem at hand. |

The cutoff procedure nay. be seen to arise

maturylly if we begin wrth Eq. (12),

+ 38,1 (R, VL, E)/28) . (C1)
with

araaa'“j’x’t)/at)vc = aa‘(v) paa‘l(R.’th)

+ fd v W, o (V) p gt (R¥t,t)

S (c2)



—53-

Using Egs. (15)=(16) and doing a little algebra,
one can transform Eg. {C2) into
a5, (R, v,t)/3t)_ = -n rd3v fd3v W (#-v yv "1
Pag s Lo ve S VR O Ve SN Yy
[ S .
X 8(vyp Ve f) LoV ¥y ') foa(¥p¥p') 0gq i (BoV.1)

+ h(m/u)3 fd3v'fd3vp'fd3vr w?(vp') o[y, + (m/m@)ﬁﬁ

9%

o

. -1 | '
-(m/h)g]vvr s(vrs_vr) fa(yr'“yr) fa'<vy’ﬁ§r)

X Eaas(Q:X':t) ‘ E (c3)

Working on the second term in Eq. (C3) by (a) changing
variables from v to»yr' = X’”Y@’ (b) doing the
integral over yp’, (e¢) interchanging v, andy ' as

integration variables, and (d) defining a vector
I=yv-v'=wm(v, - %' | (Ch)
one can rewrite Egq. (C3) in the suggestive form

aa&a'(ﬁ’i’t)/at)vc = =N rd3v fd3v U (V ﬁwrr)
* -1 | v %
K fw(yrﬁgr') vr B(Vr-vrg) [WP(Y“YI‘) pm!(gsy::tl}}

T (VY + Y) B0 (RY + XLE)] (C5)



- for all v, ¥
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The vector X represents the change in velocity
of the active atom resulting from a collision.

If this quantity is small enough such that

B,ml(B:Y +Y,t) ~ Béw‘!(ﬁs‘[:t) . (C6a)
and | ; ' .
W (YY) ® W (Y, + Y) (c6v)

7 g, and t, the colligion is not consi-

dered to be significant. Conseguently, the integra-

tions in Eg. (C5) are divided into regions where Egs. (C6)
&re or are not Satisfied. In the region where | N
Egs. (C6) hold, Eg. (C5) vaniéhes so that the integrals

in Eq. (C5) may be limited to those values of v, and ¥y
where Eqs. (06) arewggf valid. M%& substitutiﬁg Eq. (C5)
in Eq. {(Cl) and performing algebraic manipulations

similar to the reverse of those leading to Eq.:(CS)}

cne may obtain

~? ' h -~
3Byt (ReV, 1) /28 = =vE 2 (V) T4 (R, ¥, 1)

LS

v § o~ ] — )
’[Iaa'(!)] paa'(@’z’t) + I a3y Wﬁ@ﬂ(?ﬁfY) paaﬂ(Rﬁﬁgg)

where Ygg,(x) and W ,(v'»v) are still given by

Egs. (13)and (15) respectively,

| f
[Toar (D1 = [ & W (v=yn), (c8)

CT)
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and the prime restricts the integrations to only
significant collisions - i.e., those in which Egs. (C6)
do nof held.

A glance at Eq. (C7) immediately reveals that
if no significant velocity-changing collisions
occur , the only non-zero line shape parameter is
vggt(z). This is as it should be since ygg,(xﬁ
correqunds to the'line'shape parameter which arises
in theories which assume the active atom velocity
to be unaltered by collisions.9 In addition, the
“rate" for velocity-changing collisions given.by
(C8) no longer containg collisions involving small
momentum transfer; as such, one can be sure that
{T‘ZSL;(X)]s will be finite (whereas ﬁzg,(g) would be
infinite if it were calculatéd for a classical
interaction with infinite range. )

As an example of applicatibn of~conditibhs‘(06)ﬁ
consider an atomic radiation problem with active atoms
of aVérage speed u, lifetime 7, and transition
wavelength )\ subject toc collisions with perturbers of

average speed up. In such a problem,l’2

Eaa' (B,Y:ﬁ)
will have velocity dependence given by exp(ig“gt)
(normal Doppler factor) so that cohditions (C6) will
be valid for all Y's which satisfy k-Yr <<1

and Y /hp < 1. All Y's which do not satisfy both
of these requirements are considered to represent

"significant” velocity~changing collisions.
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